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Abstract. We study the Taylor varieties and obtain new characterizations of

them via compatible reflexive digraphs. Based on our findings, we prove that

in the lattice of interpretability types of varieties, the filter of the types of all
Taylor varieties is prime.

1. Introduction

We require some basic concepts to introduce the topic of our investigations in this
paper. Let A be a set. An n-ary operation f on A is idempotent if f(a, . . . , a) = a
for all a ∈ A. A clone on A is a set of operations on A that contains all projection
operations and is closed under composition. Let A be an algebra. The clone of A
denoted by Clo(A) is the clone of term operations of A. The clone of a variety V
is the clone of the free algebra generated by countably many free generators. An
algebra (a variety) is idempotent if all operations in its clone are idempotent.

A clone homomorphism from a clone C to a clone D is a map from C to D that
maps each projection of C to the corresponding projection of D and commutes with
composition. A variety V interprets in a variety W if there is a clone homomorphism
from the clone of V to the clone of W.

As easily seen, interpretability is a quasiorder on the class of varieties. The
blocks of this quasiorder are called interpretability types. In [1] Garcia and Taylor
introduced the lattice L of interpretability types of varieties that is obtained by
taking the quotient of the class of varieties quasiordered by interpretability and
the related equivalence. The join in L is described as follows. Let V1 and V2 be
two varieties of disjoint signatures. Let V1 and V2 be defined by the sets Σ1 and
Σ2 of identities, respectively. Their join V1 ∨ V2 is the variety defined by Σ1 ∪ Σ2.
The so defined join is compatible with the interpretability relation of varieties, and
naturally yields the definition of the join operation in L.

A strong Maltsev condition is a finite set of identities in the language of a variety.
A Maltsev condition is a sequence Mn, n ≥ 1, of strong Maltsev conditions where
the variety defined by Mn+1 interprets in the variety defined by Mn for each n ≥ 1.
We say that a variety V admits a Maltsev condition Mn, n ≥ 1, (or the terms
that occur in a Maltsev condition Mn, n ≥ 1) if there exists an n such that the
variety defined by Mn interprets in V. By a filter, we mean an upwardly closed
sublattice of a lattice. Clearly, the types of the varieties that admit a particular
Maltsev condition form a filter in L. Such filters of L are called Maltsev filters. A
filter F of a lattice is called prime if F is a proper subset of the lattice and for any
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two elements a, b ̸∈ F , we have a ∨ b ̸∈ F . To gain information on the structural
properties of L, it is useful to determine which of the well-known classical Maltsev
filters are prime filters in L. In case a Maltsev filter is (not) prime, we just say
sometimes that the related Maltsev condition is (not) prime.

In [1], primeness of some well-known Maltsev filters of L was decided. For exam-
ple, in [1], it was proved that the filter containing the largest element of L, given
by the Maltsev condition {x = y}, the filter determined by the Maltsev condition
{s(x, y) = s(y, x)}, and the filter determined by congruence regularity are all prime
in L. However, the filter determined by congruence distributivity is not prime in L.
The primeness of some Maltsev filters, such as the filter of the types of congruence
permutable varieties and the filter of the types of congruence modular varieties,
were stated as open problems in [1]. Not long ago, the last three authors of this
paper proved that congruence permutability is indeed a prime Maltsev condition,
see [3]. The problem on congruence modular varieties is still open.

By extending the results of Hobby and McKenzie in [4], Kearnes and Kiss elabo-
rated a hierarchy of varieties based on certain Maltsev conditions in [5]. It is natural
to look at the problem of primeness for the Maltsev filters in L that were charac-
terized in [5]. The largest Maltsev filter described in [5], introduced by Taylor in
[11], and studied in [4] is the class of the interpretability types of Taylor varieties
(Taylor interpretability types for short). In the present paper, we investigate the
class of Taylor varieties, and prove that the filter of Taylor interpretability types is
prime in L.

In Figure 1, we depicted the Maltsev filters of L that were used to establish a
certain hierarchy of varieties in [5]. A node is painted black if it symbolizes a prime
Maltsev filter, is left empty if it symbolizes a non-prime filter, and is painted gray
if its status is unknown at present. The filters in the figure are depicted accordingly
to reverse containment. This may be unusual but we want to keep the direction
coming from the interpretability ordering. It is well known that the filters in the
figure are pairwise different.

Taylor

modular

distributive

join semi-distributive

meet semi-distributive/modular

join semi-distributive/modular

permutable

n-permutablefor some n
meet semi-distributive

Figure 1. Maltsev filters that establish a hierarchy of varieties.

In a short while below, we define Taylor varieties. Then the meaning of the
filter of Taylor interpretability types that is the main object of our investigations
in the present paper becomes clear. For the definitions of the other Maltsev filters
in Figure 1, the reader should consult [5]. Note that monograph [5] contains a wide
variety of characterizations of the filter of Taylor interpretability types and most of
the other filters in the figure.
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We remark that the non-primeness of n-permutability for some n was proved by
the last three authors of the present paper in [2]. To verify the status of distribu-
tivity, join and meet semi-distributivity in Figure 1, we render a proposition.

We need the following definitions. A lattice is meet semi-distributive if it sat-
isfies the implication x ∧ y = x ∧ z ⇒ x ∧ y = x ∧ (y ∨ z). The join semi-
distributivity of a lattice is defined dually. A variety V is congruence meet semi-
distributive (congruence join semi-distributive, congruence distributive) if the con-
gruence lattice of any algebra in V has the same property. A ternary term t in the
language of a variety V is called a a majority term for V if t satisfies the identities
t(y, x, x) = t(x, y, x) = t(x, x, y) = x in V.

Proposition 1.1. The following Maltsev conditions are not prime:

(1) congruence meet semi-distributivity,
(2) congruence join semi-distributivity,
(3) congruence distributivity,
(4) admittance of a majority term.

Proof. As well known, see for example [5], any variety that satisfies a Maltsev condi-
tion on the above list also satisfies the ones prior to it. So to prove the proposition,
it suffices to present two varieties that are not meet semi-distributive such that
their join admits a majority term.

Let V1 be the variety defined by the identities

m(x, y, y) = m(y, x, y) = m(y, y, x) = x

for a single ternary operation symbol m, and V2 the variety defined by the identities

s(x, x) = x and s(x, y) = s(y, x)

for a single binary operation symbol s.
We take the algebras

A1 = (Z2; x+ y + z) ∈ V1 and A2 = (Z3; 2x+ 2y) ∈ V2

and determine the congruence lattices of the algebras A2
i ∈ Vi, 1 ≤ i ≤ 2. Notice

that these squares have the same polynomials as the groups Z2
i+1 = (Zi+1; +)2,

1 ≤ i ≤ 2, respectively. So Con(A2
i )

∼= Con(Z2
i+1)

∼= Mi+2, 1 ≤ i ≤ 2, where Mj

denotes the (j+2)-element lattice with j atoms. Since these congruence lattices are
not meet semi-distributive, the varieties V1 and V2 are not meet semi-distributive
either, but their join has a majority term of the form m(s(x, y), s(x, z), s(y, z)). □

We remark that the question of primeness of an idempotent Maltsev condition
makes sense restricted to the sublattice LId of interpretability types of idempo-
tent varieties in L. While the primeness of an idempotent Maltsev condition in
L implies the primeness of the same idempotent Maltsev condition in LId, the
converse does not hold in general. In this respect, we mention that in the proof
of the above proposition, only idempotent varieties were used, so the proposition
holds if we consider interpretability in LId, that is, majority, distributivity, join
semi-distributivity, and meet semi-distributivity are not prime Maltsev conditions
in LId as well. The primeness of the filter of Taylor interpretability types in LId

follows from Taylor’s work in [11]. We shall give an argument below. The primeness
of join semi-distributive over modular in LId immediately follows from Lemma 9.5
in [4]. It was proved in [12] that n-permutability for some n is prime in LId. The
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primeness of modularity relative to LId was obtained in [10]. The primeness of per-
mutability in LId was first proved in [6]. We are not aware of any result related to
the primeness of meet-semidistributive over modular in LId or in L.

Let SET denote the variety of algebras with no basic operations. We note that
SET interprets in every variety, and hence its interpretability type is the smallest
element of L. A Maltsev condition is trivial if the variety of SET admits it. A
Taylor variety is a variety which admits a non-trivial idempotent (strong) Maltsev
condition. Taylor varieties play a crucial role in the theory of general algebras [5], in
tame congruence theory [4], and in the theory of constraint satisfaction problems [7].
In all of these areas, the Taylor varieties are considered the well-behaved varieties
from many points of view. Meanwhile, the non-Taylor varieties are looked on as the
black sheep of the family with wild properties to be expected for them.

An identity is linear if it has at most one occurrence of a function symbol on
each side of the identity. A Taylor term is an n-ary idempotent term t for some n
such that for each 1 ≤ i ≤ n, t satisfies a linear identity

t(. . . , x, . . . ) = t(. . . , y, . . . )

in two different variables x and y, where the variables x and y displayed are in the
i-th positions respectively on both sides, and the occurrences of the variables not
displayed are arbitrarily set x or y.

The full idempotent reduct of a variety V is a variety whose signature is the set of
idempotent terms of V, and whose identities are those satisfied by the idempotent
terms for V. A group G is compatible in a variety V if there is an algebra A in V
such that the underlying sets of A and G are the same and the operations of A
commute with the group operation of G. The following characterization of Taylor
vaieties is due to Taylor, cf. Theorems 5.1, 5.2, and 5.3 in [11].

Theorem 1.2. Let V be a variety, and VId the full idempotent reduct of V. Then
the following are equivalent.

(1) V is a Taylor variety.
(2) Every compatible group is commutative in VId.
(3) VId does not interpret in SET .
(4) V admits a Taylor term.

In Theorem 1.1 of [9], Oľsák gave a characterization of Taylor varieties by some
non-trivial idempotent strong Maltsev condition, and hence their interpretability
types form a principal filter in L. An Oľsák term is a 6-ary idempotent term t that
satisfies the following identities

t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y).

Theorem 1.3. A variety V is a Taylor variety if and only if V admits an Oľsák
term.

Further equivalent conditions characterizing Taylor varieties can be found in the
monograph [5] of Kearnes and Kiss. Notice that by Theorem 1.2, if V1 and V2 are
idempotent non-Taylor varieties, then they both interpret in SET . So their join
also interprets in SET . Hence, the filter of Taylor interpretability types is prime in
LId.

The main result of this paper states that we can drop idempotency from this
statement, that is, the filter of Taylor interpretability types is prime in L. For
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the proof, we shall derive a novel characterization of Taylor varieties in Section 4.
We present some preliminary results on disjoint unions of powers of the reflexive
directed triangle digraph in Sections 2 and 3. We note at this point that the second
part of Section 2 following Corollary 2.2, and the entire Section 3 cover materials
that are not used in the proof of the main theorem. These parts of the paper contain
motivating examples and results that led to our characterization of Taylor varieties
in Section 4. So the reader may choose to skip proofs in these parts of the paper
when first reading it without losing essentials to the content of Section 4.

2. Some basic facts on powers of C

Throughout this paper, we use blackboard bold capital letters to denote re-
lational structures, in particular digraphs, and use bold capital letters to denote
algebras. Usually, we use the same capital italics to denote the base sets of these
structures. We denote by C the 3-cycle graph together with all loops. We use the
following notational convention: the vertices of C are labeled 0, 1, 2 and the edges
of C are (0, 1), (1, 2), (2, 0), (0, 0), (1, 1), (2, 2), see Figure 2.

2

0 1

Figure 2. The digraph C.

Let G and H be digraphs. An edge preserving map φ : G→ H is called a homo-
morphism from G to H. A homomorphism φ : G → H is a retraction if there exists
a homomorphism ε : H → G where φ ◦ ε = idH . A digraph H is a retract of G if
there is a retraction from G onto H. We say that H is a subdigraph of G if every
vertex of H is a vertex of G and every edge of H is an edge of G. We use H ⊆ G to
denote that H is a subdigraph of G. We call H a spanned subdigraph of G, if H ⊆ G
and every edge of G whose end vertices are in H is also an edge of H. A digraph
is connected if the reflexive, symmetric, transitive closure of its edge relation is the
full relation. The (connected) components of a digraph are the maximal connected
spanned subdigraphs.

Let H = (H,→) be a digraph and I an arbitrary set. Then we write HI for the
digraph whose vertices are the elements of HI , i.e., all functions from I to H, and
whose set of edges is {(u, v) ∈ (HI)2 : ∀i ∈ I, u(i) → v(i)}. One can think of I as
a set of coordinates, and then u(i) denotes the i-th entry of some vertex u ∈ HI .
For J ⊆ I we write πJ for the projection map from HI to HJ , i.e., πJ(a) = a|J .
This map is clearly a surjective homomorphism from HI to HJ . A homomorphism
from HI to H is called an I-ary polymorphism of H.

We conceive of CI as the Abelian group ZI
3. So addition and subtraction for the

elements of CI are always understood as in ZI
3. For some subset J ⊆ I we define

χJ ∈ CI by
χJ(j) = 1 if j ∈ J, and χJ(j) = 0 otherwise.

Clearly, every a ∈ CI can uniquely be written as a = χA − χB for some disjoint
subsets A and B of I.
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We call a digraph H reflexive if for any u ∈ H, u→ u. A digraph H is antisym-
metric if for any u, v ∈ H, u→ v → u implies u = v.

Lemma 2.1. Let H be an antisymmetric digraph such that any non-loop edge of H
is contained in at most one copy of C in H. Let I be a finite set, and f : CI → H a
homomorphism. Then there exist J ⊆ I and an isomorphism ι : CJ → f(CI) such
that f = ι ◦ πJ . In particular, the image of f is isomorphic to a finite power of C.

Proof. Let

J := {j ∈ I : f depends on its j-th coordinate}.

We assume that J is non-empty, for otherwise f is a constant map and the claim
obviously holds. Clearly, then there exists an onto homomorphism ι : CJ → f(CI)
such that f = ι ◦ πJ . It suffices to prove that ι is injective and its inverse is also a
homomorphism.

First we prove that ι is injective. Let us suppose to the contrary that a and b are
different elements in CJ such that ι(a) = ι(b). Then there are some A,B ⊆ J such
that A ∩ B = ∅ and b = a + χA − χB . Without loss of generality, we may assume
that A is non-empty and j ∈ A. Then b → a − χA → a in CJ , whence ι(b) →
ι(a− χA) → ι(a) in H. So by ι(a) = ι(b) and antisymmetry in H, ι(a− χA) = ι(a).

Then a−χA → a−χ{j} → a in CJ and ι(a−χA) → ι(a−χ{j}) → ι(a) in H. Hence
by ι(a − χA) = ι(a) and antisymmetry, ι(a − χ{j}) = ι(a). Now a → a + χ{j} →
a− χ{j} in CJ and ι(a) → ι(a+ χ{j}) → ι(a− χ{j}) in H. By using antisymmetry
again, ι(a+ χ{j}) = ι(a). Thus for a we have that ι(a− χ{j}) = ι(a) = ι(a+ χ{j}).

Clearly, ι depends on its j-th coordinate since f does. So there exists c ∈ CJ

such that ι(c− χ{j}) and ι(c) are different. By antisymmetry, ι(c− χ{j}), ι(c) and
ι(c + χ{j}) are pairwise different. So we may assume that a(j) = c(j) for such c.

Now there is a sequence in CJ that starts with a and ends with c such that j-th
components of the members are all equal to a(j) and any two consecutive members
differ in a single component. This sequence clearly has two consecutive members
a′ and c′ such that ι(a′ − χ{j}) = ι(a′) = ι(a′ + χ{j}), and ι(c

′ − χ{j}), ι(c
′) and

ι(c′ + χ{j}) are pairwise different. So we may assume that there is k ̸= j such that
a(i) = c(i) for all i ∈ J \ {k}, ι(a−χ{j}) = ι(a) = ι(a+χ{j}), and ι(c−χ{j}), ι(c)
and ι(c + χ{j}) are pairwise different. We may also assume that a(k) = 0 and
c(k) = 1.

Let D be the subdigraph spanned by all the tuples d in CJ such that d(i) = a(i)
for all i ∈ J \ {j, k}. Let φ = π{k,j}|D. Obviously, φ is an isomorphism from

D to C2. Let ψ = ι|Dφ−1. Then ψ is a homomorphism from C2 to ι(CJ) such
that by the properties of a and c, we have that ψ(0, 0) = ψ(0, 1) = ψ(0, 2), and
ψ(1, 0), ψ(1, 1), ψ(1, 2) are pairwise different. Then

ψ(2, 0) → ψ(0, 0) = ψ(0, 1) → ψ(1, 0) → ψ(2, 0), and

ψ(2, 0) → ψ(0, 0) = ψ(0, 1) → ψ(1, 2) → ψ(2, 0) in H.

Observe that the set S of the ψ-values appearing on the preceding two lines has less
than four elements. Indeed, for otherwise the vertices appearing on each line would
yield a copy of C in H, and these two different copies of C would share the common
edge ψ(2, 0) → ψ(0, 0), which is impossible. Then by antisymmetry of H, S is a
singleton or a 3-element set. So in both cases, ψ(1, 0) = ψ(1, 2), a contradiction.
Thus ι has to be injective.
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We prove that the inverse of ι is a homomorphism. Now let a and b be arbitrary
elements of CJ . Let us assume that ι(a) → ι(b). Put b = a + χA − χB for some
A,B ⊆ J, A ∩ B = ∅. Then let c = a − χA − χB , and d = a − χA. Clearly,
b → c → a and b → d → a. Therefore, we have ι(a) → ι(b) → ι(c) → ι(a) and
ι(a) → ι(b) → ι(d) → ι(a). As H is antisymmetric and in H every non-loop edge is
in at most one copy of C, it follows that ι(c) = ι(d), and thus c = d. This means
exactly that B = ∅, and thus a→ b. □

We note that later in the paper, typical applications of Lemma 2.1 occur when
H is a subdigraph of some power of C. For any relational structure Q, let Pol(Q)
denote the clone of finitary polymorphisms of Q. By the help of the lemma, Pol(C)
is easily described.

Corollary 2.2. The clone Pol(C) consists of all constant operations of C and the
essentially automorphism operations of C.

The following example shows that Lemma 2.1 fails for infinite powers. Let I be
any set, and let P(I) denote the lattice of all subsets of I. The prime filters of P(I)
are usually called ultra filters.

Example 2.3. For any set I and ultra filter U ⊆ P(I), the map

f : CI → C, a 7→ aU where a−1(aU ) ∈ U

is a homomorphism.

The following lemma gives that in fact, all non-constant homomorphisms from
powers of C to C are of the form as in the preceding example, apart from an
automorphism of C.

Lemma 2.4. Let I be an arbitrary set, and f : CI → C a non-constant homomor-
phism. Then there exist an ultra filter U ⊆ P(I) and an automorphism α of C such
that for all a ∈ CI

f(a) = α(aU ) where a
−1(aU ) ∈ U .

Proof. We assume first that f(χ∅) = 0 and f(χI) = 1. Note that in this case
for all X ⊆ I we have χ∅ → χX → χI , therefore f(χX) ∈ {0, 1}. Let us define
U = {X ⊆ I : f(χX) = 1}. We first show that U is an ultra filter. We prove this by
showing that

(1) U is closed under finite intersections,
(2) for all X ⊆ I we have either X ∈ U or I \X ∈ U ,
(3) ∅ ̸∈ U .

Item 3 is clear from the definition of U . For the proofs of the other two items,
let X and Y be any two subsets of I. We define an equivalence ϱ on I by

(i, j) ∈ ϱ iff χX(i) = χX(j) and χY (i) = χY (j).

Let k be the number of blocks of ϱ. Clearly, k ≤ 4. Let D be the subdigraph spanned
by

D = {a ∈ CI : (i, j) ∈ ρ implies a(i) = a(j)}
in CI . We require the following claim.

Claim. The map f |D is a projection to some coordinate s ∈ I.
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Proof of claim. Let τ : Ck → D be the isomorphism that maps (c1, . . . , ck) to∑k
i=1 ciχBi

where the Bi, 1 ≤ i ≤ k, are the blocks of ϱ. Then by Corollary 2.2,
f |Dτ : Ck → C is a projection composed with an automorphism of C. Since

χ∅, χI ∈ D, f(χ∅) = 0 and f(χI) = 1,

we obtain that f |Dτ is a projection to some coordinate j where 1 ≤ j ≤ k. Then
f |D is a projection to any coordinate s ∈ Bj . ■

To prove item 1, suppose that X,Y ∈ U . Then by the claim f |D = πs|D for some
coordinate s ∈ I. Now s must be in X ∩ Y , since χX , χY ∈ D, and

f(χX) = πs(χX) = f(χY ) = πs(χY ) = 1.

Thus f(χX∩Y ) = πs(χX∩Y ) = 1.
To prove item 2, suppose that X ̸∈ U . By letting X = Y and applying the claim,

we obtain that there is an s ∈ I such that f |D = πs|D. This time s must be in
I \ X, since f(χX) = πs(χX) = 0. Hence f(χI\X) = πs(χI\X) = 1. Thus U is an
ultra filter indeed.

From the definition of U , for any a ∈ {0, 1}I , f(a) = 1 if and only if a−1(1) ∈ U .
If a ∈ {0, 1}I , we also have that f(a) ∈ {0, 1}, so f(a) = 0 if and only if a−1(0) ∈ U .
Let a ∈ CI such that its range contains 2, say a = χA−χB for two disjoint subsets
A and B of I. Then the vertices χA+χB , a, χA clearly form a copy of C in CI . As
χA+χB , χA ∈ {0, 1}I , f(a) is uniquely determined by the known values f(χA+χB)
and f(χA). Thus f is the unique homomorphism from CI to C extending the partial
definition f(χ∅) = 0 and f(χI) = 1. Hence f must be the homomorphism given by
f(a) = aU for any a ∈ CI .

For the general case we distinguish between two cases depending on whether
f(χ∅) = f(χI) or not. We first assume that f(χ∅) ̸= f(χI). As f is a homomor-
phism, f(χI) = f(χ∅)+1. Let α be an automorphism of C such that α : f(χ∅) 7→ 0.
Then α−1 ◦ f(χ∅) = 0 and α−1 ◦ f(χI) = 1. Thus α−1f(a) = aU for some ultra
filter U ⊆ P(I) which is exactly what we wanted to show.

We are left with the case when f(χ∅) = f(χI). We claim that in this case f must
be constant. Let a be an arbitrary element in CI . Put a = χA−χB for two disjoint
subsets A and B of I. Let b = χA + χB and c = χA. Then

χ∅ → b→ χI , χ∅ → c→ χI and b→ a→ c.

This is only possible if f(a) = f(b) = f(c) = f(χ∅) = f(χI). □

The preceding lemma is needed in the present paper only to verify the following
proposition.

2

0 1

e

Figure 3. The digraph C1.

Proposition 2.5. Let C1 be the disjoint union of the one-element reflexive digraph
and C where the isolated element of C1 is denoted by e, see Figure 3. Let C1 be
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an algebra on C1 = {e, 0, 1, 2} whose term operations coincide with the operations
of Pol(C1). Then the variety V generated by C1 is a non-Taylor variety, and the
non-trivial powers of C are not compatible digraphs in V.

Proof. Since the Taylor identities (including idempotency) are preserved under tak-
ing retract and C that has no Taylor polymorphism is a retract of C1, V is a non-
Taylor variety. To see that no non-trivial power of C is a compatible digraph in
V, suppose that CI is compatible in V for some I ̸= ∅. Observe that C1 admits a
binary polymorphism f with a unit element e. Then CI must admit a binary poly-
morphism f ′ with a unit element. We may conceive of f ′ as a homomorphism from
CI∪̇I′

to CI where I ′ is a disjoint copy of I. So f ′ = (f ′i)i∈I where for each i ∈ I, f ′i
is a homomorphism from CI∪̇I′

to C. Since f ′ has a unit element, for any i ∈ I, f ′i
must depend on each of its coordinates in I ∪̇ I ′. Let us fix an i ∈ I. Then by the
preceding lemma, there exist an ultra filter U ⊆ P(I ∪̇ I ′) and an automorphism α

of C such that for all a ∈ CI∪̇I′

f ′i(a) = α(aU ) where a
−1(aU ) ∈ U .

Only one of I and I ′ is in U , say I ∈ U . Let Ū be the restriction of U to I. Clearly,
Ū is an ultra filter on I. Moreover, for any a ∈ CI∪̇I′

if b = a|I , then bŪ = aU and

f ′i(a) = α(bŪ ) where b
−1(bŪ ) ∈ Ū .

Thus, f ′i only depends on the coordinates in I, a contradiction. □

The above proposition just shows that there exist non-Taylor varieties that have
no non-trivial compatible C-powers. So the non-Taylor varieties cannot be charac-
terized by the existence of compatible C-powers. In Section 4, we shall prove that
such a characterization is possible by the use of a proper class of compatible disjoint
unions of C-powers. In the next section, we argue that there is no such character-
ization given by a single disjoint union of finite C-powers. The proof of this fact
uses a rather interesting Maltsev characterization of the n-th powers of relational
structures.

3. A Maltsev condition characterizing the n-th powers of
relational structures

In this section, relational structures are allowed to have infinitary relations. For
any relational structure A and equivalence ν of A, we define the quotient relational
structure A/ν of the same signature as A as follows. The base set of A/ν equals
the set A/ν of the blocks of ν, and for any I-ary relation R of A the corresponding
I-ary relation of A/ν consists of the I-tuples (ai/ν)i∈I where (ai)i∈I ∈ R.

An operation f : An → A is called an n-ary product decomposition operation if
f satisfies the following identities

f(x, . . . , x) =x,

f(f(x1,1, . . . , x1,n), . . . , f(xn,1, . . . , xn,n)) =f(x1,1, . . . , xn,n).

Remark 3.1. Let A =
∏n

j=1 Bj . Then the operation f : An → A defined by

f((b1,1, . . . , b1,n), . . . , (bn,1, . . . , bn,n)) = (b1,1, . . . , bn,n) where i, j ≤ n, bi,j ∈ Bj

is clearly an n-ary product decomposition polymorphism of A.
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Perhaps after this remark, it is not surprising that the existence of an n-ary
product decomposition polymorphism leads to an n-fold product decomposition of
a relational structure as follows.

Theorem 3.2. Let A be any relational structure which has an n-ary product de-
composition polymorphism f . For each i ≤ n, let νi denote the binary relation that
consists of the pairs (a, b) ∈ A2 such that for some sequence cj, j ̸= i, in A

f(c1, . . . , ci−1, a, ci+1, . . . , cn) = f(c1, . . . , ci−1, b, ci+1, . . . , cn).

Then the following hold.

(1) For each i ≤ n, νi is an equivalence on A.
(2) The map

φ : A→
n∏

i=1

A/νi, a 7→ (a/ν1, . . . , a/νn)

is an isomorphism from A to the relational structure
∏n

i=1 A/νi.

Proof. First we prove item (1). Let i ≤ n. Clearly, νi is reflexive and symmetric.
For proving transitivity, we require the following claim.

Claim. For each i ≤ n, νi consists of the pairs (a, b) ∈ A2 such that for any
sequence dj, j ̸= i, in A

f(d1, . . . , di−1, a, di+1, . . . , dn) = f(d1, . . . , di−1, b, di+1, . . . , dn).

Proof of claim. Suppose that aνib. Then there exist cj , j ̸= i, such that

f(c1, . . . , ci−1, a, ci+1, . . . , cn) = f(c1, . . . , ci−1, b, ci+1, . . . , cn).

By using the fact that f is an n-ary product decomposition operation, we obtain
that for any dj , j ≤ n,

f(f(d1, d2, . . . , dn), . . . , f(c1, . . . , ci−1, a, ci+1, . . . , cn), . . . , f(d1, d2, . . . , dn)) =

f(d1, . . . , di−1, a, di+1, . . . , dn)

and

f(f(d1, d2, . . . , dn), . . . , f(c1, . . . , ci−1, b, ci+1, . . . , cn), . . . , f(d1, d2, . . . , dn)) =

f(d1, . . . , di−1, b, di+1, . . . , dn).

Since the left sides of the preceding two equalities are equal, so are the right
sides. This concludes the proof of the claim. ■

Suppose now that aνibνic. Then by the claim, for any dj , j ̸= i,

f(d1, . . . , di−1, a, di+1, . . . , dn) =f(d1, . . . , di−1, b, di+1, . . . , dn) =

f(d1, . . . , di−1, c, di+1, . . . , dn).

In particular, aνic. Thus νi is transitive.
We prove item (2). Suppose that φ(a) = φ(b). Then for all i ≤ n, aνib. Since f is

idempotent, by applying the above claim for the pair (a, b) ∈ νi, d1 = · · · = di = b
and di+1 = · · · = dn = a where i ≤ n we obtain

a = f(a, a, . . . , a) = f(b, a, . . . , a) = f(b, b, a, . . . , a) = · · · = f(b, . . . , b) = b.

So φ is injective.
To prove that φ is surjective, it suffices to show that for any sequence ai, i ≤ n,

in A, φ(f(a1, . . . , an)) = (a1/ν1, . . . , an/νn), that is, for all i, f(a1, . . . , an)νiai. We
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prove the latter for i = 1, the proof is analogous for the cases when i ≥ 2. By the
properties of f

f(f(a1, . . . , an), a2, . . . , an) = f(f(a1, . . . , an), f(a2, . . . , a2), . . . , f(an, . . . , an)) =

f(a1, . . . , an).

So f(a1, . . . , an)ν1a1 indeed.
Clearly, φ preserves the relations of A. We prove that its inverse also does.

Let ϱ be a J-ary relation of A, and suppose that (φ(aj))j∈J ∈ ϱ′ where ϱ′ is
the relation of

∏n
i=1 A/νi corresponding to ϱ. By the definition of ϱ′, for each

i ≤ n there is a tuple (aj,i)j∈J ∈ ϱ such that ajνiaj,i for all j ∈ J . Since f
preserves ϱ, (f(aj,1, . . . , aj,n))j∈J ∈ ϱ. In the preceding paragraph we saw that
φ(f(aj,1, . . . , aj,n)) = (aj,1/νj,1, . . . , aj,n/νj,n). So by ajνiaj,i, i ≤ n, we have that
φ(aj) = φ(f(aj,1, . . . , aj,n)). Since φ is injective, aj = f(aj,1, . . . , aj,n) for all j ∈ J .
Thus (aj)j∈J ∈ ϱ, which concludes the proof. □

Our main goal in this section is to obtain a characterization of the n-th powers
of relational structures via some Maltsev condition. In order to do this, we require
the following definition. An operation f : An → A is called an n-ary power decom-
position operation if f is an n-ary product decomposition operation and there is a
g : A→ A such that f and g satisfy the additional identities

gn(x) =x,

g(f(x1, x2, . . . , xn)) =f(g(x2), . . . , g(xn), g(x1)).

Such a g is called a coordinate shift operation with respect to f . In this case we also
say that f is an n-ary power decomposition operation with respect to g.

Remark 3.3. Let A = Bn. Then the operation f : An → A defined by

f((b1,1, . . . , b1,n), . . . , (bn,1, . . . , bn,n)) = (b1,1, . . . , bn,n) where i, j ≤ n, bi,j ∈ B

is clearly an n-ary power decomposition polymorphism of A with the coordinate
shift automorphism g defined by

g(b1, b2, . . . , bn) = (b2, . . . , bn, b1) where i ≤ n, bi ∈ B.

Now we prove that the existence of an n-ary power decomposition polymorphism
with repect to a coordinate shift endomorphism implies that the relational structure
is isomorphic to the n-th power of some relational structure.

Theorem 3.4. Let A be any relational structure which has an n-ary power decom-
position polymorphism f with respect to a coordinate shift endomorphism g. For
each i ≤ n, let νi denote the equivalence defined in the statement of the preceding
theorem. Then g is an automorphism of A, and for any i ≤ n, g(νi) = νi−1 where
i − 1 is meant by modulo n. Moreover, A is isomorphic to the n-th power of the
relational structure A/ν1.

Proof. Since g is an endomorphism with gn(x) = x, g is an automorphism of A
with inverse gn−1. Let i ≤ n. Let (a, b) ∈ νi. we prove that (g(a), g(b)) ∈ νi−1. By
(a, b) ∈ νi, there are some elements ci ∈ A, i ≤ n, such that

f(c1, . . . , ci−1, a, ci+1, . . . , cn) = f(c1, . . . , ci−1, b, ci+1, . . . , cn).
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By plugging both sides into g and applying the identity satisfied by f and g we
obtain

f(g(c2), . . . , g(ci−1), g(a), g(ci+1), . . . , g(cn), g(c1)) =

f(g(c2), . . . , g(ci−1), g(b), g(ci+1), . . . , g(cn), g(c1)).

Thus (g(a), g(b)) ∈ νi−1, and hence g(νi) ⊆ νi−1 for all i. Then

νi−1 = gn(νi−1) ⊆ gn−1(νi−2) ⊆ · · · ⊆ g2(νi+1) ⊆ g(νi) ⊆ νi−1

where the indices are meant by modulo n. Therefore, g(νi) = νi−1 for all i ≤ n.
Finally, we prove that all of the factors A/νi, i ≤ n, of the product decomposition

of A are isomorphic to each other. Indeed, since g is an automorphism, for all i ≤ n

A/νi ∼= g(A)/g(νi) ∼= A/νi−1. □

As an immediate consequence of the preceding remark and theorem, we obtain
a characterization of the n-th powers by a strong Maltsev condition.

Theorem 3.5. Any relational structure A is the n-th power of a relational structure
if and only if A admits the strong Maltsev condition

f(x, . . . , x) =x,

f(f(x1,1, . . . , x1,n), . . . , f(xn,1, . . . , xn,n)) =f(x1,1, . . . , xn,n),

gn(x) =x,

g(f(x1, x2, . . . , xn)) =f(g(x2), . . . , g(xn), g(x1)).

We remark that for any n, the Maltsev condition that characterizes the n-fold
product decomposition (the set of the first two identities for f in the corollary) is
a trivial Maltsev condition. Indeed, by taking f as the first projection on the two
element set, we obtain an n-ary product decomposition operation.

On the other hand, if a relational structure A of at least two elements admits the
Maltsev condition for the n-th power decomposition (the set of all four identities
in the corollary), then f must depend on each of its coordinates. This is because
the equivalences νi, i ≤ n, corresponding to f differ from the full relation A2. In
particular, for n ≥ 2, the Maltsev condition that describes the n-th power decom-
position is a non-trivial Maltsev condition. (This also follows from the fact that a
2-element set never is an n-th power for n ≥ 2.)

Now we apply Theorem 3.5 to verify that certain digraphs are forbidden as
compatible digraphs in the variety assigned naturally to the n-th power of a finite
digraph of certain type.

Corollary 3.6. Let n ≥ 2, and let A be a finite, reflexive, connected, directly
indecomposable digraph. Let An be the algebra on An with the polymorphism of An

as basic operations, and V the variety generated by An. Then V has no compatible

digraph of the form
⋃̇

j∈JAnj where nj < n for all j ∈ J and nj > 0 for some
j ∈ J .

Proof. Let us suppose to the contrary that V has a compatible digraph of the form⋃̇
j∈JAnj . Since An and so V admit the Maltsev condition given in the preceding

theorem, by the theorem there is a digraph B such that Bn ∼=
⋃̇

j∈JAnj . Now by
the assumption for the disjoint union, at least one of the connected components of
B, say B0 has more than one element. Since the disjoint union is reflexive, B and
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all of its components are reflexive. Hence Bn
0 is a component of Bn. So Bn

0
∼= Anj

for some nj > 0. Hence by the unique decomposition theorem for finite connected
reflexive digraphs, see Corollary 4.7 in [8], B0

∼= Am for some m ≥ 1. This implies
that |A|mn = |B0|n = |A|nj which contradicts the fact that n > nj . □

The immediate corollary below shows indeed that there exists no disjoint union
U of finite C-powers such that some of the C-powers are non-trivial and U is a
compatible digraph in any non-Taylor variety. In other words, the non-Taylor vari-
eties cannot be characterized by the existence of a fixed compatible disjoint union
of finite C-powers.

Corollary 3.7. Let n ≥ 2. Let Cn be the algebra on Cn with the polymorphism
of Cn as basic operations, and V the variety generated by Cn. Then V has no

compatible digraph of the form
⋃̇

j∈JCnj where nj < n for all j ∈ J and nj > 0 for
some j ∈ J .

4. Characterizations of Taylor varieties

In this section, we prove the main result of the paper. In order to do this, we
require the following Lemma.

Lemma 4.1. Let G be a relational structure and K ⊆ G. Let S be subclone of
Pol(G). If for any f ∈ Pol(K), there is unique extension f∗ ∈ S, then the map

φ : Pol(K) → S, f 7→ f∗

is a clone homomorphism.

Proof. Clearly, any projection operation f on K extends to a projection operation
of G. By uniqueness of f∗, the latter projection operation must be f∗. We prove
that φ commutes with composition. Let f be an n-ary and g be an m-ary oper-
ation in Pol(K). Then the restriction of f∗(g∗(x1, . . . , xm), y2, . . . , yn) onto H is
f(g(x1, . . . , xm), y2, . . . , yn). So by uniqueness of the extension in S

(f(g(x1, . . . , xm), y2, . . . , yn))
∗ = f∗(g∗(x1, . . . , xm), y2, . . . , yn). □

The following characterization of non-Taylor varieties plays a crucial role in the
proof of our main result.

Lemma 4.2. Let V be a variety. Then V is a non-Taylor variety if and only if there
exist a non-empty set T and sets Ht, t ∈ T , such that some of the Ht are non-

empty and
⋃̇

t∈TCHt is a compatible digraph in V. If V is a locally finite non-Taylor
variety, then T and Ht, t ∈ T, can be chosen to be finite.

Proof. First we prove the “only if” part of the first statement of the lemma. So we
assume that V is a non-Taylor variety. Let F be the free algebra freely generated by
three elements x, y and z in V. We define a compatible digraph F of F with letting
the edge relation of F be the subalgebra of F2 generated by the set of pairs

{(x, x), (y, y), (z, z), (x, y), (y, z), (z, x)}.
By definition, for any u, v ∈ F , u→ v in F if and only if there is a 6-ary term h of
V such that u(x, y, z) = h(x, y, z, x, y, z) and v(x, y, z) = h(x, y, z, y, z, x) in F.

Clearly, x, y and z are pairwise different elements in F . Indeed, being non-Taylor,
V does not satisfy the identity x = y. Notice that the vertices x, y and z with the
six edges of the above generating set constitute a subdigraph of F isomorphic to C.
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This subdigraph of F is called CF. The subdigraph CF is a spanned subdigraph of
F, for otherwise, there would be a 6-ary term h such that

(h(x, y, z, x, y, z), h(x, y, z, y, z, x)) ∈ {(y, x), (z, y), (x, z)}

which is impossible, because the resulting identities, for example

h(x, y, z, x, y, z) = y and h(x, y, z, y, z, x) = x,

make h to be a Taylor term for V.
We conceive of the underlying set F of F as the set of ternary term operations

of F. Let T be the set of unary term operations of F. For any t ∈ T , we write Ft

for the set of the ternary term operations u ∈ F such that u(x, x, x) = t(x). Let Ft

be the subdigraph of F spanned by Ft, t ∈ T . We claim that Ft, t ∈ T, are exactly
the connected components of F. Indeed, if u→ v in F, then

u(x, x, x) = h(x, x, x, x, x, x) = v(x, x, x) = t(x)

for some 6-ary term h, and thus each connected component is contained in some Ft.
On the other hand, by using the compatibility of F in F, for any t ∈ T and u ∈ Ft,
we have u(x, y, z) → u(x, y, x) and u(x, x, x) → u(x, y, x). Hence for all u ∈ Ft, u
and t(x) = u(x, x, x) are in the same component of F. Thus, for any t ∈ T , Ft is
connected.

For any t ∈ T , let Ht denote the set of non-constant homomorphisms from Ft

to C. Let T0 := {t ∈ T : Ht = ∅} and T+ := T \ T0. For any t ∈ T0, we define 0t to
be a new constant and for any u ∈ Ft, we let [u] = 0t. For any t ∈ T+ and for any
u ∈ Ft, we let [u] be the function Ht → C, φ 7→ φ(u).

For any t ∈ T , we define the digraph Kt as follows. The vertices of Kt are the
[u], u ∈ Ft, and the edges of Kt are the ([u], [v]) where u→ v in Ft. We remark that
by the definition, for any t ∈ T , t ∈ T0 if and only if Kt is a one-element digraph, in
which case the vertex set of Kt is {0t} and its edge relation is {(0t, 0t)}. We define
K to be the digraph whose connected components coincide with the digraphs Kt,
t ∈ T , that is, K is the disjoint union of the Kt, t ∈ T . Clearly, K is a reflexive

subdigraph of the digraph G :=
⋃̇

t∈TCHt where the copy of CHt is identified with
Kt whenever t ∈ T0. We prove the required properties of the digraph G by the help
of the next four claims.

Claim 1. The kernel of the map ψ : F 7→ K,u 7→ [u] is a congruence of F.

Proof of claim. To verify Claim 1, it suffices to show that ker(ψ) is preserved by
every unary polynomial operation of F. Every unary polynomial operation of F
is of the form s(x, u2, . . . , un) where u2, . . . , un ∈ F and s is an n-ary term op-
eration of F. So let us assume that (u, v) ∈ ker(ψ). Then u, v ∈ Ft for some t.
We prove that (s(u, u2, . . . , un), s(v, u2, . . . , un)) is also in ker(ψ). As F is reflex-

ive, the digraph F̂t = Ft × {u2} × · · · × {un} is isomorphic to Ft, and hence F̂t is

connected. Since F̂t ⊆ Fn and s is a polymorphism of F, s(F̂t) is also connected.

Clearly, s(u, u2, . . . , un), s(v, u2, . . . , un) ∈ s(F̂t). Hence, there exists t′ ∈ T such
that s(u, u2, . . . , un), s(v, u2, . . . , un) ∈ Ft′ . In the case when t′ ∈ T0, this yields
immediately that (s(u, u2, . . . , un), s(v, u2, . . . , un)) ∈ ker(ψ). Now suppose that
t′ ∈ T+, and let φ ∈ Ht′ be arbitrary. Then the map

ν : Ft 7→ C, x 7→ φ(s(x, u2, . . . , un))
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is a homomorphism from F to C. Since (u, v) ∈ ker(ψ), this implies in particular
that ν(u) = ν(v). Therefore φ(s(u, u2, . . . , un)) = φ(s(v, u2, . . . , un)). Since this
holds for all φ ∈ Ht′ , we obtain that (s(u, u2, . . . , un), s(v, u2, . . . , un)) ∈ ker(ψ). ■

Now, we define an algebra K in V whose underlying set is K and whose basic
operations are defined by

uK([x1], . . . , [xn]) := [uF(x1, . . . , xn)]

for all basic operations uF of F and x1, . . . , xn ∈ F provided uF is n-ary. By
Claim 1, the basic operations of K are well-defined. Now it is clear that ψ is an
onto homomorphism from F to K and K ∼= F/ker(ψ). Moreover, it is also clear
from our construction that K is compatible with K, and K ∼= F/ker(ψ).

Claim 2. The vertices [x], [y], [z] are pairwise different.

Proof of claim. As V is non-Taylor, its full idempotent reduct VId interprets in the
variety SET . Let id ∈ T denote the identity term operation of F. Recall that Fid

is the set of all ternary idempotent term operations of F. We define two algebras
A and B on the same underlying set Fid. Algebra A is defined to be an algebra in
VId whose term operations are the restrictions of the idempotent term operations
of F to Fid. Algebra B is defined to be the unique algebra on Fid in SET . Notice
that A is the free algebra freely generated by three elments in VId. Then, a set of
identities in two variables that holds for the free algebra A, also holds for VId. In
particular, A has no Taylor term operation, since VId interprets in SET . So there
is a clone homomorphism ζ from Clo(A) to Clo(B). We know that the vertices of
Fid are represented by the the idempotent ternary term operations of F, and the
edges of Fid are given by certain identities of VId of the form

u(x, y, z) = h(x, y, z, x, y, z) and v(x, y, z) = h(x, y, z, y, z, x).

Now ζ preserves these identities, maps the ternary term operations of A to
ternary projections and fixes the ternary projections on Fid. Hence ζ restricted
to Fid ⊆ Clo(A) is a retraction from Fid onto CF. This retraction composed with
an isomorphism from CF to C yields a homomorphism from Fid to C. Now this
homomorphism is in Hid and separates the elements x, y, z. Hence [x], [y], [z] ∈ K
are pairwise different as we claimed. ■

Note that in K we have the edges [x] → [y], [y] → [z], [z] → [x], as well
as all the loops. Also, since Kid ⊆ CHid , there are no more edges between the
vertices [x], [y], [z] in K. This means in other words that the subdigraph induced on
{[x], [y], [z]} is isomorphic to C. We write CK for this subdigraph.

Claim 3. For any t ∈ T , t ∈ T+ if and only if |{[t(x)], [t(y)], [t(z)]}| = 3.

Proof of claim. The “if” direction of Claim 3 is obvious. Let us assume that t ∈ T+,
i.e. there exists a non-constant homomorphism φ from Ft to C. Then φ(u(x, y, z)) ̸=
φ(t(x)) for some u ∈ Ft. So [u(x, y, z)] ̸= [t(x)] = [u(x, x, x)]. Let u′ denote the
restriction of u to C3

K. Since K is compatible inK, u′ is a homomorphism from C3
K to

Kt ⊆ CHt , and u′ is not constant since [u(x, y, z)] = u([x], [y], [z]) and [u(x, x, x)] =
u([x], [x], [x]) are contained in the image u(C3

K) of u
′. Then by Lemma 2.1, u′ = ιπJ

where πJ is the projection to the coordinates in J for some non-empty J , and ι is an
isomorphism. Then πJ and hence u′ map the diagonal elements of C3

K to separate
elements. So [t(x)] = u([x], [x], [x]), [t(y)] = u([y], [y], [y]), and [t(z)] = u([z], [z], [z])
are pairwise different. ■



16 BERTALAN BODOR, GERGŐ GYENIZSE, MIKLÓS MARÓTI, AND LÁSZLÓ ZÁDORI

Now let f be an n-ary operation in Pol(K). Clearly, f restricted to any connected
component of Kn is a homomorphism to some component of K. It is also clear that

any component D of Kn equals some product
n∏

j=1

Ktj where t1, . . . , tn ∈ T . So f |D

maps
n∏

j=1

Ktj to some Kt, t ∈ T . Clearly, if t ∈ T0, since Kt is one-element, f |D

is a constant map. If t ∈ T+, since Kt ⊆ CHt , f |D = (fs)s∈Ht
where the fs are

homomorphisms from
n∏

j=1

Ktj to C.

Claim 4. If t ∈ T+, then any of the homomorphisms fs as above is either constant
or there exist a unique 1 ≤ ℓ ≤ n with tℓ ∈ T+ and a unique homomorphism
φ ∈ Htℓ such that fs(y1, . . . , yn) = yℓ(φ).

Proof of claim. For the proof of Claim 4, let

P := t1(CK)× · · · × tn(CK).

Then we have P ⊆
n∏

j=1

Ktj . By Claim 3, we know that if tj ∈ T+ then tj(CK) is

isomorphic to C, otherwise tj(CK) is a singleton. Therefore, P is isomorphic to a
power of C. Hence, by Corollary 2.2, the restriction of fs to P either is a constant
map or there is a unique ℓ such that tℓ ∈ T+ and fs|P only depends on the ℓ-th
coordinate.

Let ([u1], . . . , [un]) be any tuple in
n∏

j=1

Ktj where the uj are arbitrary elements

in Ftj for 1 ≤ j ≤ n. Note that in this case

P ⊆ u1(C3
K)× · · · × un(C3

K) ⊆
n∏

j=1

Ktj .

By Lemma 2.1, we know that each u1(C3
K) is isomorphic to a finite power of C,

therefore
u1(C3

K)× · · · × un(C3
K)

is also isomorphic to a finite power of C. Hence, by Corollary 2.2, the restriction of
fs to

u1(C
3
K)× · · · × un(C

3
K)

is a constant map or there is an 1 ≤ ℓ′ ≤ n such that tℓ′ ∈ T+ and the restriction
only depends on the ℓ′-th coordinate. Since P ⊆ u1(C

3
K)× · · · × un(C

3
K), it follows

that ℓ′ = ℓ, that is, ℓ′ does not depend on our choice of the tuple ([u1], . . . , [un]).
This implies, that either fs is constant, or there exists a unique ℓ such that

tℓ ∈ T+ and fs(y1, . . . , yn) = q(yl) where q is a non-constant map from Ktℓ to C. In
the latter case, q must be a homomorphism, since fs is a homomorphism from the
product of reflexive digraphs Ktj , 1 ≤ j ≤ n. Let φ := q◦ψ. Since ψ(Ftℓ) = Ktℓ , φ is
not constant, and hence φ ∈ Htℓ . Then q must be the projection to the coordinate
φ. Indeed, for any element u ∈ Ftℓ

q([u]) = q(ψ(u)) = φ(u) = [u](φ).

The uniqueness of φ is now obvious. ■

By Claim 2, Hid ̸= ∅. So to finish the proof of the “only if” part of the first

statement of the lemma, we prove that G =
⋃̇

t∈TCHt is a compatible digraph in V.
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As K is compatible in V, it suffices to verify that there is a clone homomorphism
from Pol(K) to Pol(G). We prove the existence of such a clone homomorphism by
an application of Lemma 4.1 as follows. Clearly, K ⊆ G. We define a subclone S of
Pol(G). The clone S consists of the n-ary operations g ∈ Pol(G)) such that for each
component D of the digraph Gn the restriction g|D is either constant or g(D) ⊆ CHt

for some t ∈ T+ and each of the coordinate maps of g|D is a projection to some
coordinate or constant. It is easy to see that S is indeed a subclone. By Claim 4,
every n-ary operation of f ∈ Pol(K) uniquely extends to an operation of f∗ ∈ S.
So by Lemma 4.1, it follows that there exists a clone homomorphism from Pol(K)
to S, and hence to Pol(G).

To conclude the proof of the first statement of the lemma, we assume that⋃̇
t∈TCHt is a compatible digraph in V and for some t ∈ T , Ht ̸= ∅. Then C

is a retract of
⋃̇

t∈TCHt . As the existence of a Taylor polymorphism is inherited
under taking retract and C admits no Taylor operation, V is a non-Taylor variety.

The finiteness statement of the lemma is obvious by our construction of the
C-power components of G in the above proof. □

In order to prove the primeness of the filter of Taylor interpretability types in
L, we require a modified version of the preceding lemma.

Corollary 4.3. Let V be a variety. Then V is a non-Taylor variety if and only if for

any large enough cardinal κ, the digraph
⋃̇

λ≤κ2
κCλ, where λ stands for a cardinal

and 2κCλ denotes the disjoint union of 2κ-many copies of Cλ, is a compatible
digraph in V.

Proof. We prove the “only if” part of the claim, the other direction is immediate
from the preceding lemma. Let V be an arbitrary non-Taylor variety. Since V is a
non-Taylor variety, by the preceding lemma, there are some cardinals κt, t ∈ T,

not all zero, such that G =
⋃̇

t∈TCκt is a compatible digraph in V. Let κ be an
arbitrary infinite cardinal with κ ≥ κt for all t ∈ T and κ ≥ |T |. By taking the
κ-th power of G, we obtain a compatible digraph G1 in V such that G1 is also a
disjoint union of C-powers and the largest exponent that appears in the C-power
components of G1 is κ. Clearly, G1 has at most 2κ components and |G1| = 2κ.

By a primitive positive definition as follows, we construct a compatible digraph
G2 from G1 in V such that G2 is a sum of C-powers where each cardinal λ ≤ κ
appears as an exponent of some C-power component. The vertex set of G2 is the set
of homomorphisms from C to G1. To define the edge set of G2 we use the digraph
D given in Figure 4. We set f → g in G2 iff the map given by ai 7→ f(i), bi 7→ g(i),
0 ≤ i ≤ 2, is a homomorphism from D to G1.

a b

ba

a b

22

0 0

1 1

Figure 4. The digraph D.
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It is easy to see that G2 is a reflexive digraph. Since D is connected, any connected
component of G2 is contained in the set of the homomorphisms from C to Cν where
Cν is a connected component of the digraph G1. Let (d0, d1, d2) ∈ G2 an arbitrary
element, that is, either {d0, d1, d2} is a singleton or induces a subdigraph isomorphic
to C in G1. Our goal is to describe the connected component E of (d0, d1, d2) in G2.
In the argument what follows, we assume that all of the entries of (d0, d1, d2) ∈ G2

are in fact in Cν .
Let s be any ordinal less than ν. Let us assume that (d0, d1, d2) → (e0, e1, e2) in

G2. Then we have that e0, e1, e2 ∈ Cν . Clearly, the map given by ai 7→ di(s) and
bi 7→ ei(s), 0 ≤ i ≤ 2, is a homomorphism from D to C. Then as one checks easily,
for each s < ν, either all of the di(s) and ei(s) coincide where 0 ≤ i ≤ 2, or the
di(s) are pairwise different. In the latter case, either ei(s) = di(s) for all 0 ≤ i ≤ 2
or ei(s) = di(s) + 1 for all 0 ≤ i ≤ 2.

By the preceding paragraph, E consists of all 3-tuples (e0, e1, e2) ∈ G2 such
that for each s < ν, e0(s) = e1(s) = e2(s) = d0(s) if d0(s) = d1(s) = d2(s) and
(e0(s), e1(s), e2(s)) ∈ {(0, 1, 2), (2, 0, 1), (1, 2, 0)} otherwise. The edges in E are given
by (e0, e1, e2) → (f0, f1, f2) iff for each s < ν, either ei(s) = fi(s) for all 0 ≤ i ≤ 2
or fi(s) = ei(s) + 1 for all 0 ≤ i ≤ 2. Then E is a product of one-element reflexive
digraphs and copies of the subdigraph of C3 spanned by {(0, 1, 2), (2, 0, 1), (1, 2, 0)}
that is isomorphic to C. Hence E is isomorphic to Cν′

for some cardinal ν′ ≤ ν.
Clearly, for any cardinal ν′ ≤ ν, if we set (d0(s), d1(s), d2(s)) = (0, 1, 2) for the
coordinates s < ν′ and (d0(s), d1(s), d2(s)) = (0, 0, 0) for the remaining coordinates
ν′ ≤ s < ν, then the component containing (d0, d1, d2) in G2 is isomorphic to

Cν′
. By taking into account that G1 has a component isomorphic to Cκ, G2 has

a component isomorphic to Cλ for any cardinal λ ≤ κ and G2 is a disjoint union
of such components. Notice that by our construction, any component of G2 has
at most 2κ isomorphic copies in G2. So G2 has at most κ2κ = 2κ components.
Since each component of G2 has at most 2κ elements, G2 is a compatible digraph
of cardinality 2κ in V.

Let L denote the digraph with 2κ-many vertices whose edge relation is the equal-
ity relation. Since G2 is a compatible digraph of cardinality 2κ in V, L is also a
compatible digraph in V. Finally, let G3 = G2 × L. Since both G2 and L are com-
patible in V, so is G3. Clearly, G3 is a disjoint union of the powers Cλ when λ runs
through the cardinals at most κ where each copy of Cλ appears precisely 2κ-many
times as a component of G3. □

Now by the use of the preceding corollary, we can easily prove the main result
of the paper.

Theorem 4.4. The filter of the interpretability types of all Taylor varieties is prime
in L.

Proof. It suffices to prove that the join of any two non-Taylor varieties is non-
Taylor. Let V and W be arbitrary non-Taylor varieties. By the preceding corollary,

there exists an infinite cardinal κ such that the digraph
⋃̇

λ≤κ2
κCλ is a compatible

digraph in both varieties V and W. Therefore, this digraph is also compatible in
V ∨W. Then by using the corollary again, V ∨W is a non-Taylor variety. □
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Finally, we would like to compare the interpretability types of the non-Taylor
varieties that are defined via the digraphs occurring in the statement of Corol-
lary 4.3. For an infinite cardinal κ, let Vκ denote the variety generated by the

algebra Aκ whose universe is Aκ =
⋃̇

λ≤κ2
κCλ where λ is a cardinal, and whose

basic operations are the polymorphisms of Aκ =
⋃̇

λ≤κ2
κCλ. The beth numbers are

the cardinals defined by the transfinite recursion ℶ0 := ℵ0 and for any non-zero
ordinal α, ℶα := supβ<α 2ℶβ where β is an ordinal.

Proposition 4.5. The following hold.

(1) For any two infinite cardinals κ1 and κ2 with 2κ1 < 2κ2 , Vκ1
interprets in

Vκ2
, but Vκ2

does not interpret in Vκ1
.

(2) The interpretability types of the non-Taylor varieties Vℶα where α is an
ordinal form a chain of unbounded size in L.

Proof. Item (1) implies item (2) obviously. So we prove that (1) holds. Within the
proof, we use the abbreviations Ai = Aκi , Ai = Aκi , and Vi = Vκi for 1 ≤ i ≤ 2.
Since

Aκ2
1 = (

⋃̇
λ≤κ1

2κ1Cλ)κ2 ∼=
⋃̇

λ≤κ2

2κ2Cλ = A2,

A2 is a compatible digraph in V1. Therefore, V1 interprets in V2. We want to prove
that V2 does not interpret in V1. To the contrary, let us assume that ζ is a clone
homomorphism from the clone of V2 to the clone V1. Clearly, the unary constant
operations in the clone of V2 are mapped to unary constant operations in the clone
of V1 by ζ. Since A2 has 2κ2 components, A1 has 2κ1 elements, and 2κ1 < 2κ2 , there

exist two elements a and b in two different components of A2 such that ζ(â) = ζ(b̂)

where â and b̂ denote the unary constant term operations corresponding to a and
b in the clone of V2, respectively. Clearly, the ternary operation f(z, x, y) defined
to be x if z is in the component containing a, and y otherwise is a basic operation

of A2. Then the identities f(â, x, y) = x, f(b̂, x, y) = y hold in the clone of V2. By

applying ζ and using that ζ(â) = ζ(b̂), the identities

x = ζ(f)(ζ(â), x, y) = ζ(f)(ζ(b̂), x, y) = y

must be satisfied by the clone of V1. So in particular, A1 ∈ V1 must have one
element, a contradiction. □

In particular, it is not possible to characterize non-Taylor varieties by having a

fixed compatible digraph of the form
⋃̇

t∈TCκt where T is a non-empty set and the

κt are cardinals, not all zero. Indeed, if
⋃̇

t∈TCκt was compatible in all non-Taylor
varieties, then by Corollary 4.3, there would be a κ such that Aκ would also be
compatible, but by the first part of the preceding proposition Aκ is not compatible
in the non-Taylor variety V2κ , a contradiction. Notice that this behavior of non-
Taylor varieties sharply differs from that of the idempotent non-Taylor varieties.
Indeed, the latter varieties are characterized by having C as a compatible digraph.
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